Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 3-[2-(*p*-tolylcarbamothioyl)hydrazinylidene]butanoate

Yan-Ling Zhang, Xu-Feng Hou, Fu-Juan Zhang and Feng-Ling Yang*

College of Chemistry and Chemical Engineering, Xuchang University, Henan 461000, People's Republic of China Correspondence e-mail: zhangyanling315@126.com

Received 20 October 2010; accepted 21 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.057; wR factor = 0.175; data-to-parameter ratio = 13.9.

The title compound, $C_{14}H_{19}N_3O_2S$, was obtained from a condensation reaction of *N*-(*p*-tolyl)hydrazinecarbothioamide and ethyl acetoacetate. The molecule assumes an *E* configuration; the thiosemicarbazide and ester groups are located on the opposite sides of the C=N bond. The almost planar thiosemicarbazide unit (r.m.s. deviation = 0.0130 Å) is tilted at a dihedral angle of 49.54 (12)° with respect to the benzene ring. Intermolecular N-H···N and N-H···S hydrogen bonding stabilizes the crystal structure. The ethoxy group of the ester unit is disordered over two positions, with a site-occupancy ratio of 0.680 (10):0.320 (10).

Related literature

For biological applications of thiosemicarbazones, see: Okabe *et al.* (1993); Hu *et al.* (2006). For related structures, see: Zhang *et al.* (2005); Shan & Zhang (2006).

Experimental *Crystal data* C₁₄H₁₉N₃O₂S

Orthorhombic, *Ibca* a = 14.1747 (3) Å b = 25.1439 (4) Å c = 17.4381 (2) Å V = 6215.08 (17) Å³

Data collection

Oxford Diffraction Xcalibur Eos
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\rm min} = 0.703, T_{\rm max} = 0.726$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	H atoms treated by a mixture of
$wR(F^2) = 0.175$	independent and constrained
S = 1.07	refinement
2775 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
199 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots N3^{i}$ $N2 - H2B \cdots S1^{ii}$	0.81 (3) 0.86	2.54 (3) 2.85	3.300 (3) 3.5572 (18)	155 (2) 141

Symmetry codes: (i) $-x + \frac{3}{2}$, y, -z + 1; (ii) $x, -y + 1, -z + \frac{3}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of the Education Department of Henan Province, China (2010B150029) and the Science and Technique Foundation of Henan Province, China (0624290013, 082300420110) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5056).

References

- Hu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). *Bioorg. Med. Chem. Lett.* **16**, 2213–2218.
- Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford
- Diffraction Ltd, Yarnton, England. Oxford Diffraction (2009). *CrysAlis PRO*. Oxford Diffraction Ltd, Yarnton, England.
- Shan, S. & Zhang, Y.-L. (2006). Acta Cryst. E62, o2051–o2052.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Zhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, 01173-01175.

Z = 16Cu $K\alpha$ radiation

 $\mu = 1.90 \text{ mm}^{-1}$

 $0.20 \times 0.18 \times 0.18 \ \text{mm}$

6852 measured reflections 2775 independent reflections

2380 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.018$

supplementary materials

Acta Cryst. (2010). E66, o2971 [doi:10.1107/S160053681004290X]

Ethyl 3-[2-(p-tolylcarbamothioyl)hydrazinylidene]butanoate

Y.-L. Zhang, X.-F. Hou, F.-J. Zhang and F.-L. Yang

Comment

Thiosemicarbazones have attracted much attention as they show potential application in the biological field (Okabe *et al.*, 1993; Hu *et al.*, 2006). There are a few single-crystal reports about them (Zhang *et al.*, 2005; Shan *et al.*, 2006). Detailed information on their molecular and crystal structures is necessary to understand their anticancer activity. The molecular structure of (I) is shown in Fig 1. The molecule of (I) exhibits an E configuration. The thiosemicarbazide and Ethyl aceto-acetate unit are located on opposite sides of the N3=C9 bond. The thiosemicarbazide unit has a planar configuration and is tilted with respect to the *p*-methylphenyl mean plane, forming a dihedral angle of 49.54 (12)°. In the crystal structure of the title compound, there are N(1)—H(1 N)···N(3)#1, N(1)—H(1 N)···N(1)#1 and N(2)—H(2B)···S(1)#2 hydrogen-bond interactions in molecules (Fig. 2).

Experimental

N-(p-Tolyl)thiosemicarbazide (1.8 g,10 mmol) and ethyl acetoacetate (1.3 g, 10 mmol) was dissolved in 95% ethanol (15 ml) and the solution was refluxed for 2 h. Fine colorless crystals appeared on cooling. They were filtered and washed by 95% ethanol to give 2.13 g of the title compound in 71.7% yield. Single crystals suitable for X-ray measurements were obtained from mother liquid by slow evaporation at room temperature.

Refinement

The H1N atom was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93-0.97 and N—H = 0.86 Å, and refined using a riding model, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C,N)$ for the others. The ethoxy part of the ester unit is disordered over two positions with site occupancies ratio of 0.680 (10):0.320 (10).

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.

Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed line.

Ethyl 3-[2-(p-tolylcarbamothioyl)hydrazinylidene]butanoate

Crystal data

 $C_{14}H_{19}N_{3}O_{2}S$ $M_{r} = 293.38$ Orthorhombic, *Ibca* Hall symbol: -I 2b 2c a = 14.1747 (3) Å b = 25.1439 (4) Å c = 17.4381 (2) Å V = 6215.08 (17) Å³ Z = 16 F(000) = 2496 $D_x = 1.254 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4042 reflections $\theta = 3.1-72.2^{\circ}$ $\mu = 1.90 \text{ mm}^{-1}$ T = 293 KPrismatic, colorless $0.20 \times 0.18 \times 0.18 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer	2775 independent reflections
Radiation source: fine-focus sealed tube	2380 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.018$
ω scans	$\theta_{\text{max}} = 67.0^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$h = -16 \rightarrow 13$
$T_{\min} = 0.703, T_{\max} = 0.726$	$k = -30 \rightarrow 29$
6852 measured reflections	$l = -20 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.175$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.111P)^{2} + 3.488P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2775 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
199 parameters	$\Delta \rho_{max} = 0.33 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
S1	0.89584 (5)	0.56086 (3)	0.67758 (3)	0.0567 (3)	
N1	0.84677 (12)	0.51980 (8)	0.54081 (10)	0.0426 (4)	
N2	0.78883 (13)	0.47864 (8)	0.64691 (10)	0.0468 (5)	
H2B	0.7853	0.4742	0.6957	0.056*	
N3	0.74049 (14)	0.44509 (7)	0.59763 (10)	0.0456 (5)	
C1	0.88957 (13)	0.55867 (8)	0.49298 (12)	0.0405 (5)	
C2	0.93995 (16)	0.54086 (9)	0.42997 (11)	0.0449 (5)	
H2A	0.9461	0.5046	0.4210	0.054*	
C3	0.98110 (17)	0.57697 (10)	0.38031 (13)	0.0521 (6)	
НЗА	1.0146	0.5646	0.3381	0.063*	
C4	0.97320 (18)	0.63105 (10)	0.39238 (14)	0.0569 (6)	
C5	0.9206 (2)	0.64823 (10)	0.45486 (15)	0.0595 (6)	
H5A	0.9137	0.6845	0.4636	0.071*	
C6	0.87831 (18)	0.61255 (10)	0.50432 (14)	0.0513 (5)	
H6A	0.8423	0.6249	0.5452	0.062*	
C7	1.0220 (3)	0.66988 (14)	0.33947 (19)	0.0859 (10)	
H7A	1.0114	0.7055	0.3573	0.129*	
H7B	0.9970	0.6662	0.2886	0.129*	
H7C	1.0885	0.6627	0.3389	0.129*	
C8	0.84189 (14)	0.51858 (9)	0.61720 (11)	0.0420 (5)	
C9	0.68544 (16)	0.41050 (9)	0.62652 (13)	0.0479 (5)	
C10	0.6300 (2)	0.37820 (11)	0.56998 (17)	0.0627 (7)	
H10A	0.6424	0.3924	0.5193	0.075*	
H10B	0.5636	0.3838	0.5805	0.075*	
C11	0.6470 (3)	0.31894 (13)	0.56713 (19)	0.0735 (8)	
C12	0.6676 (2)	0.40351 (14)	0.71046 (17)	0.0765 (9)	
H12A	0.7242	0.3913	0.7350	0.115*	
H12B	0.6183	0.3778	0.7178	0.115*	
H12C	0.6489	0.4369	0.7324	0.115*	
01	0.6285 (3)	0.29160 (13)	0.5138 (2)	0.1299 (13)	
C13	0.7213 (7)	0.2436 (2)	0.6246 (4)	0.113 (3)	0.680 (10)
H13A	0.7212	0.2299	0.5726	0.135*	0.680 (10)
H13B	0.7831	0.2372	0.6466	0.135*	0.680 (10)
C14	0.6501 (10)	0.2163 (3)	0.6696 (5)	0.143 (4)	0.680 (10)
H14A	0.6632	0.1789	0.6701	0.214*	0.680 (10)
H14B	0.5891	0.2224	0.6473	0.214*	0.680 (10)
H14C	0.6509	0.2297	0.7211	0.214*	0.680 (10)
O2	0.7016 (4)	0.30089 (13)	0.6237 (2)	0.0891 (18)	0.680 (10)
C13'	0.6327 (18)	0.2371 (11)	0.6442 (15)	0.138 (8)*	0.320 (10)
H13C	0.6033	0.2200	0.6005	0.165*	0.320 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H13D	0.5973	0.2272	0.6896	0.165*	0.320 (10)
C14'	0.7322 (16)	0.2172 (10)	0.6520 (14)	0.137 (7)*	0.320 (10)
H14D	0.7318	0.1792	0.6561	0.206*	0.320 (10)
H14E	0.7603	0.2322	0.6972	0.206*	0.320 (10)
H14F	0.7680	0.2276	0.6078	0.206*	0.320 (10)
O2'	0.6275 (10)	0.2960 (5)	0.6341 (7)	0.115 (4)*	0.320 (10)
H1N	0.8246 (18)	0.4946 (12)	0.5181 (15)	0.046 (7)*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0723 (5)	0.0606 (4)	0.0371 (4)	-0.0171 (3)	-0.0054 (2)	-0.0039 (2)
N1	0.0470 (9)	0.0466 (10)	0.0342 (9)	-0.0067 (8)	-0.0016 (7)	-0.0005 (7)
N2	0.0538 (10)	0.0543 (11)	0.0322 (8)	-0.0077 (8)	0.0016 (7)	0.0029 (7)
N3	0.0515 (10)	0.0467 (10)	0.0386 (9)	-0.0045 (8)	-0.0002 (8)	0.0017 (7)
C1	0.0393 (10)	0.0482 (11)	0.0341 (10)	-0.0022 (8)	-0.0036 (7)	0.0046 (8)
C2	0.0517 (11)	0.0466 (11)	0.0365 (10)	-0.0001 (9)	0.0001 (9)	0.0009 (8)
C3	0.0532 (12)	0.0639 (14)	0.0392 (11)	-0.0003 (11)	0.0042 (9)	0.0060 (10)
C4	0.0628 (14)	0.0594 (14)	0.0486 (12)	-0.0090 (12)	-0.0029 (11)	0.0148 (10)
C5	0.0755 (15)	0.0432 (12)	0.0599 (14)	0.0016 (11)	-0.0050 (12)	0.0069 (10)
C6	0.0582 (12)	0.0512 (12)	0.0447 (11)	0.0072 (10)	0.0020 (10)	0.0012 (10)
C7	0.105 (3)	0.080 (2)	0.0724 (18)	-0.0259 (19)	0.0066 (18)	0.0257 (16)
C8	0.0431 (10)	0.0485 (11)	0.0343 (10)	0.0003 (8)	-0.0005 (8)	0.0004 (8)
C9	0.0478 (11)	0.0475 (11)	0.0483 (12)	-0.0010 (9)	0.0000 (9)	0.0068 (9)
C10	0.0680 (15)	0.0528 (14)	0.0674 (16)	-0.0119 (12)	-0.0098 (13)	0.0079 (12)
C11	0.087 (2)	0.0642 (17)	0.0695 (17)	-0.0118 (15)	-0.0066 (15)	-0.0055 (14)
C12	0.0829 (19)	0.090 (2)	0.0560 (15)	-0.0268 (17)	0.0156 (14)	0.0096 (14)
01	0.172 (3)	0.098 (2)	0.120 (2)	0.027 (2)	-0.048 (2)	-0.0389 (19)
C13	0.166 (7)	0.061 (3)	0.111 (5)	0.016 (4)	0.012 (5)	0.013 (3)
C14	0.250 (13)	0.073 (4)	0.106 (5)	-0.010 (6)	0.047 (7)	0.013 (4)
O2	0.130 (4)	0.0540 (18)	0.083 (2)	0.0084 (19)	-0.021 (2)	0.0044 (15)

Geometric parameters (Å, °)

1.680 (2)	C10-C11	1.510 (4)
1.334 (3)	C10—H10A	0.9700
1.421 (3)	C10—H10B	0.9700
0.81 (3)	C11—O1	1.186 (4)
1.357 (3)	C11—O2'	1.332 (12)
1.386 (3)	C11—O2	1.333 (5)
0.8600	C12—H12A	0.9600
1.272 (3)	C12—H12B	0.9600
1.378 (3)	C12—H12C	0.9600
1.385 (3)	C13—C14	1.450 (13)
1.384 (3)	C13—O2	1.468 (7)
0.9300	C13—H13A	0.9700
1.381 (4)	С13—Н13В	0.9700
0.9300	C14—H14A	0.9600
1.389 (4)	C14—H14B	0.9600
	1.680 (2) 1.334 (3) 1.421 (3) 0.81 (3) 1.357 (3) 1.386 (3) 0.8600 1.272 (3) 1.378 (3) 1.385 (3) 1.384 (3) 0.9300 1.381 (4) 0.9300 1.389 (4)	1.680(2) $C10-C11$ $1.334(3)$ $C10-H10A$ $1.421(3)$ $C10-H10B$ $0.81(3)$ $C11-O1$ $1.357(3)$ $C11-O2'$ $1.386(3)$ $C12-H12A$ $1.272(3)$ $C12-H12B$ $1.378(3)$ $C13-C14$ $1.385(3)$ $C13-O2$ 0.9300 $C13-H13A$ $1.381(4)$ $C13-H13B$ 0.9300 $C14-H14A$ $1.389(4)$ $C14-H14B$

C4—C7	1.511 (3)	C14—H14C	0.9600
C5—C6	1.381 (4)	C13'—O2'	1.49 (3)
C5—H5A	0.9300	C13'—C14'	1.50 (4)
C6—H6A	0.9300	C13'—H13C	0.9700
C7—H7A	0.9600	C13'—H13D	0.9700
С7—Н7В	0.9600	C14'—H14D	0.9600
C7—H7C	0.9600	C14'—H14E	0.9600
C9—C12	1.496 (3)	C14'—H14F	0.9600
C9—C10	1.500 (4)		
C8—N1—C1	128.61 (19)	C11—C10—H10B	107.8
C8—N1—H1N	116.7 (18)	H10A—C10—H10B	107.1
C1—N1—H1N	114.7 (18)	O1—C11—O2'	113.0 (6)
C8—N2—N3	119.19 (16)	O1—C11—O2	120.8 (4)
C8—N2—H2B	120.4	O2'—C11—O2	47.5 (6)
N3—N2—H2B	120.4	O1—C11—C10	124.2 (3)
C9—N3—N2	118.29 (19)	O2'—C11—C10	111.4 (6)
C6—C1—C2	119.4 (2)	O2—C11—C10	113.8 (3)
C6—C1—N1	122.8 (2)	С9—С12—Н12А	109.5
C2-C1-N1	117.6 (2)	C9—C12—H12B	109.5
C3—C2—C1	120.1 (2)	H12A—C12—H12B	109.5
C3—C2—H2A	119.9	C9—C12—H12C	109.5
C1—C2—H2A	119.9	H12A—C12—H12C	109.5
C4—C3—C2	121.1 (2)	H12B—C12—H12C	109.5
С4—С3—НЗА	119.4	C14—C13—O2	109.7 (8)
С2—С3—НЗА	119.4	C14—C13—H13A	109.7
C3—C4—C5	118.0 (2)	O2—C13—H13A	109.7
C3—C4—C7	120.4 (3)	C14—C13—H13B	109.7
C5—C4—C7	121.6 (3)	O2—C13—H13B	109.7
C6—C5—C4	121.4 (2)	H13A—C13—H13B	108.2
C6—C5—H5A	119.3	C13—C14—H14A	109.5
C4—C5—H5A	119.3	C13—C14—H14B	109.5
C1—C6—C5	119.9 (2)	H14A—C14—H14B	109.5
С1—С6—Н6А	120.0	C13—C14—H14C	109.5
С5—С6—Н6А	120.0	H14A—C14—H14C	109.5
С4—С7—Н7А	109.5	H14B—C14—H14C	109.5
С4—С7—Н7В	109.5	C11—O2—C13	116.9 (5)
H7A—C7—H7B	109.5	O2'—C13'—C14'	113 (2)
С4—С7—Н7С	109.5	O2'—C13'—H13C	109.0
H7A—C7—H7C	109.5	C14'—C13'—H13C	109.0
Н7В—С7—Н7С	109.5	O2'—C13'—H13D	109.0
N1—C8—N2	115.26 (19)	C14'—C13'—H13D	109.0
N1-C8-S1	125.98 (17)	H13C—C13'—H13D	107.8
N2-C8-S1	118.75 (15)	C13'—C14'—H14D	109.5
N3—C9—C12	124.8 (2)	C13'—C14'—H14E	109.5
N3—C9—C10	115.5 (2)	H14D—C14'—H14E	109.5
C12—C9—C10	119.4 (2)	C13'—C14'—H14F	109.5
C9—C10—C11	118.2 (2)	H14D—C14'—H14F	109.5
C9—C10—H10A	107.8	H14E—C14'—H14F	109.5
C11-C10-H10A	107.8	C11—O2'—C13'	121.6 (14)

supplementary materials

C9—C10—H10B	107.8		
C8—N2—N3—C9	-174.7 (2)	N3—N2—C8—S1	176.99 (15)
C8—N1—C1—C6	-44.9 (3)	N2—N3—C9—C12	0.8 (4)
C8—N1—C1—C2	138.9 (2)	N2—N3—C9—C10	175.7 (2)
C6—C1—C2—C3	2.1 (3)	N3—C9—C10—C11	116.9 (3)
N1—C1—C2—C3	178.3 (2)	C12-C9-C10-C11	-67.9 (4)
C1—C2—C3—C4	0.2 (3)	C9—C10—C11—O1	-158.9 (4)
C2—C3—C4—C5	-1.6 (4)	C9—C10—C11—O2'	60.4 (7)
C2—C3—C4—C7	177.4 (2)	C9—C10—C11—O2	8.7 (5)
C3—C4—C5—C6	0.9 (4)	O1-C11-O2-C13	-11.8 (7)
C7—C4—C5—C6	-178.2 (3)	O2'-C11-O2-C13	82.2 (9)
C2—C1—C6—C5	-2.8 (3)	C10-C11-O2-C13	-180.0 (5)
N1—C1—C6—C5	-178.9 (2)	C14—C13—O2—C11	-90.3 (9)
C4—C5—C6—C1	1.3 (4)	O1—C11—O2'—C13'	30.6 (18)
C1—N1—C8—N2	174.30 (19)	O2-C11-O2'-C13'	-80.9 (16)
C1—N1—C8—S1	-6.5 (3)	C10-C11-O2'-C13'	175.9 (14)
N3—N2—C8—N1	-3.8 (3)	C14'-C13'-O2'-C11	77 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N1—H1N···N3 ⁱ	0.81 (3)	2.54 (3)	3.300 (3)	155 (2)	
N2—H2B…S1 ⁱⁱ	0.86	2.85	3.5572 (18)	141	
Symmetry codes: (i) $-x+3/2$, y , $-z+1$; (ii) x , $-y+1$, $-z+3/2$.					

Fig. 1

Fig. 2

